Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38050998

RESUMO

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Assuntos
Neoplasias , Nitrosaminas , Tabaco sem Fumaça , Humanos , Carcinógenos/toxicidade , Tabaco sem Fumaça/toxicidade , Mutagênicos , Nitratos , Nitritos , Nitrosaminas/toxicidade , Nitrosaminas/química , Nitrosaminas/metabolismo , Neoplasias/induzido quimicamente
2.
ACS Omega ; 8(14): 12664-12670, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065074

RESUMO

Studies were performed to investigate the effects of surface water quality parameters on the degradation of microcystin-LR (MC-LR) using high-energy electron beam (eBeam) technology. Surface water samples were collected across different geographic locations in the United States. Water quality parameters including pH, alkalinity, TDS, and dissolved oxygen were measured in all samples. Degradation of MC-LR in all samples, regardless of parameter concentrations, was above 99%. The effect of natural organic matter (NOM) on MC-LR degradation was also investigated in the presence of fulvic acid. Similarly, the degradation efficiency of MC-LR exceeded 99% for all concentrations of fulvic acid at 5 kGy. This study suggests that surface water quality has a negligible effect on the degradation of MC-LR via eBeam treatment. The results indicate that eBeam technology is a promising technique for the treatment of water contaminated with microcystins.

3.
Radiat Phys Chem Oxf Engl 1993 ; 202: 110557, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36189446

RESUMO

Beginning with the outbreak of COVID-19 at the dawn of 2020, the continuing spread of the pandemic has challenged the healthcare market and the supply chain of Personal Protective Equipment (PPE) around the world. Moreover, the emergence of the variants of COVID-19 occurring in waves threatens the sufficient supply of PPE. Among the various types of PPE, N95 Respirators, surgical masks, and medical gowns are the most consumed and thus have a high potential for a serious shortage during such emergencies. Considering the unanticipated demand for PPE during a pandemic, re-processing of used PPE is one approach to continue to protect the health of first responders and healthcare personnel. This paper evaluates the viability and efficacy of using FDA-approved electron beam (eBeam) sterilization technology (ISO 11137) to re-process used PPE. PPEs including 3M N95 Respirators, Proxima Sirus gowns, and face shields were eBeam irradiated in different media (air, argon) over a dose range of 0-200 kGy. Several tests were then performed to examine surface properties, mechanical properties, functionality performance, discoloration phenomenon, and liquid barrier performance. The results show a reduction of filtration efficiency to about 63.6% in the N95 Respirator; however, charge regeneration may improve the re-processed efficiency. Additionally, mechanical degradation was observed in Proxima Sirus gown with increasing dose up to 100 kGy. However, no mechanical degradation was observed in the face shields after 10 times donning and doffing. Apart from the face shield, N95 Respirators and Proxima Sirus gown both show significant mechanical degradation with ebeam dose over sterilization doses (>25 kGy), indicating that eBeam technology is not appropriate for the re-processing these PPEs.

4.
Toxicon X ; 16: 100141, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406140

RESUMO

Maize is a staple food in Kenya. However, maize is prone to fungal infestation, which may result in production of harmful aflatoxins and fumonisins. Electron beam (eBeam) food processing is a proven post-harvest technology, but published literature is rare on the ability of eBeam to reduce mycotoxins in naturally contaminated maize samples. This study evaluated the efficacy of eBeam doses in reducing viable fungal populations and the destruction of aflatoxins and fumonisins in naturally highly contaminated maize samples from eastern Kenya. Ninety-seven maize samples were analyzed for total aflatoxins and fumonisins using commercial ELISA kits. Then, 24 samples with >100 ng/g of total aflatoxins and >1000 ng/g of total fumonisins were chosen for eBeam toxin degradation studies. Prior to eBeam exposure studies, the samples were made into a slurry using sterile de-ionized water. These slurry samples were exposed to target doses of 5 kGy, 10 kGy, and 20 kGy, with 0 kGy (untreated) samples as controls. Samples were analyzed for total fungal load using culture methods, the quantity of total aflatoxins and fumonisins using ELISA, and the presence of Aspergillus and Fusarium spp. nucleic acids using qPCR for just control samples. There was a significant positive correlation in the control samples between total Aspergillus and aflatoxin levels (r = 0.54; p = 0.007) and total Fusarium and fumonisin levels (r = 0.68; p < 0.001). Exposure to eBeam doses 5 kGy and greater reduced fungal loads to below limits of detection by plating (<1.9 log(CFU/g)). There was also a significant (p = 0.03) average reduction of 0.3 log (ng/g) in aflatoxin at 20 kGy (range from -0.9 to 1.4 log (ng/g)). There was no significant reduction in fumonisin even at 20 kGy. eBeam doses below 20 kGy did not reduce mycotoxins. These results confirm the sensitivity of fungi to eBeam doses in a naturally contaminated maize slurry and that 20 kGy is effective at degrading some pre-formed aflatoxin in such maize preparations.

5.
Front Chem ; 10: 888285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646817

RESUMO

Gamma-ray irradiation, using the cobalt-60 isotope, is the most common radiation modality used for medical device and biopharmaceutical products sterilization. Although X-ray and electron-beam (e-beam) sterilization technologies are mature and have been in use for decades, impediments remain to switching to these sterilization modalities because of lack of data on the resulting radiation effects for the associated polymers, as well as a lack of education for manufacturers and regulators on the viability of these sterilization alternatives. For this study, the compatibility of ethylene vinyl acetate (EVA) multilayer films with different ionizing radiation sterilization (X-ray, e-beam, and gamma irradiation) is determined by measuring chemical and physical film properties using high performance liquid chromatography, differential scanning calorimetry, Fourier-Transform InfraRed spectroscopy (FTIR), surface energy measurement, and electron spin resonance techniques. The results indicate that the three irradiation modalities induce no differences in thermal properties in the investigated dose range. Gamma and X-Ray irradiations generate the same level of reactive species in the EVA multilayer film, whereas e-beam generates a reduced quantity of reactive species.

6.
Front Immunol ; 13: 840077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359996

RESUMO

Electron beam (eBeam) inactivation of pathogens is a commercially proven technology in multiple industries. While commonly used in a variety of decontamination processes, this technology can be considered relatively new to the pharmaceutical industry. Rotavirus is the leading cause of severe gastroenteritis among infants, children, and at-risk adults. Infections are more severe in developing countries where access to health care, clean food, and water is limited. Passive immunization using orally administered egg yolk antibodies (chicken IgY) is proven for prophylaxis and therapy of viral diarrhea, owing to the stability of avian IgY in the harsh gut environment. Since preservation of viral antigenicity is critical for successful antibody production, the aim of this study was to demonstrate the effective use of electron beam irradiation as a method of pathogen inactivation to produce rotavirus-specific neutralizing egg yolk antibodies. White leghorn hens were immunized with the eBeam-inactivated viruses every 2 weeks until serum antibody titers peaked. The relative antigenicity of eBeam-inactivated Wa G1P[8] human rotavirus (HRV) was compared to live virus, thermally, and chemically inactivated virus preparations. Using a sandwich ELISA (with antibodies against recombinant VP8 for capture and detection of HRV), the live virus was as expected, most immunoreactive. The eBeam-inactivated HRV's antigenicity was better preserved when compared to thermally and chemically inactivated viruses. Additionally, both egg yolk antibodies and serum-derived IgY were effective at neutralizing HRV in vitro. Electron beam inactivation is a suitable method for the inactivation of HRV and other enteric viruses for use in both passive and active immunization strategies.


Assuntos
Rotavirus , Animais , Anticorpos Neutralizantes , Antígenos Virais , Galinhas , Gema de Ovo , Elétrons , Feminino , Frequência Cardíaca , Humanos
7.
Front Immunol ; 13: 845514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222438

RESUMO

Given the current pandemic the world is struggling with, there is an urgent need to continually improve vaccine technologies. Ionizing radiation technology has a long history in the development of vaccines, dating back to the mid-20th century. Ionizing radiation technology is a highly versatile technology that has a variety of commercial applications around the world. This brief review summarizes the core technology, the overall effects of ionizing radiation on bacterial cells and reviews vaccine development efforts using ionizing technologies, namely gamma radiation, electron beam, and X-rays.


Assuntos
Radiação Ionizante , Desenvolvimento de Vacinas , Raios gama , Tecnologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34040287

RESUMO

Harmful cyanobacterial blooms (cyanoHABs) pose threats to human and animal health due to the production of harmful cyanotoxins. Microcystis aeruginosa is a common cyanobacterium associated with these blooms and is responsible for producing the potent cyclic hepatotoxin microcystin-LR (MC-LR). Concerns over the public health implications of these toxins in water supplies have increased due to rising occurrence of these blooms. High energy electron beam (eBeam) irradiation technology presents a promising strategy for the mitigation of both cyanobacterial cells and cyanotoxins within the water treatment process. However, it is imperative that both cellular and chemical responses to eBeam irradiation are understood to ensure efficient treatment. We sought to investigate the effect of eBeam irradiation on M. aeruginosa cells and MC-LR degradation. Results indicate that doses as low as 2 kGy are lethal to M. aeruginosa cells and induce cell lysis. Even lower doses are required for degradation of the parent MC-LR toxin. However, it was observed that there is a delay in cell lysis after irradiation where M. aeruginosa cells may still be metabolically active and able to synthesize microcystin. These results suggest that eBeam may be suitable for cyanoHAB mitigation in water treatment if employed following cell lysis.

9.
Animals (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802503

RESUMO

Clostridium perfringens (Cp) is a Gram-positive anaerobe that is one of the causative agents of necrotic enteritis (NE) in chickens, which leads to high mortality. Owing to the ban of administering antibiotics in feed to chickens, there has been an increase in the number of NE outbreaks all over the world, and the estimated loss is approximately 6 billion U.S. dollars. The best alternative method to control NE without antibiotics could be vaccination. In this study, we exposed three different strains of Cp to electron beam (eBeam) irradiation to inactivate them and then used them as a killed vaccine to control the colonization of Cp in broiler chickens. The vaccine was delivered to 18-day old embryos in ovo and the chickens were challenged with the respective vaccine strain at two different time points (early and late) to test the protective efficacy of the vaccine. The results indicate that an effective eBeam dose of 10 kGy inactivated all three strains of Cp, did not affect the cell membrane or epitopes, induced significant levels of IgY in the vaccinated birds, and further reduced the colonization of Cp strains significantly (p < 0.0001) in late challenge (JGS4064: 4 out of 10; JGS1473: 0 out of 10; JGS4104: 3 out of 10). Further studies are necessary to enhance the efficacy of the vaccine and to understand the mechanism of vaccine protection.

10.
PLoS One ; 16(4): e0243417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861743

RESUMO

This study investigates the microbiological and immunological basis underlying the efficacy of electron beam-inactivated immune modulators. The underlying hypothesis is that exposure to eBeam-based ionization reactions inactivate microorganisms without modifying their antigenic properties and thereby creating immune modulators. The immunological correlates of protection induced by such eBeam based Salmonella Typhimurium (EBST) immune modulators in dendritic cell (DC) (in vitro) and mice (in vivo) models were assessed. The EBST stimulated innate pro inflammatory response (TNFα) and maturation (MHC-II, CD40, CD80 and CD86) of DC. Immuno-stimulatory potential of EBST was on par with both a commercial Salmonella vaccine, and live Salmonella cells. The EBST cells did not multiply under permissive in vitro and in vivo conditions. However, EBST cells remained metabolically active. EBST immunized mice developed Salmonella-specific CD4+ T-cells that produced the Th1 cytokine IFNγ at a level similar to that induced by the live attenuated vaccine (AroA- ST) formulation. The EBST retained stable immunogenic properties for several months at room temperature, 4°C, and -20°C as well as after lyophilization. Therefore, such eBeam-based immune modulators have potential as vaccine candidates since they offer the safety of a "killed" vaccine, while retaining the immunogenicity of an "attenuated" vaccine. The ability to store eBeam based immune modulators at room temperature without loss of potency is also noteworthy.


Assuntos
Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Vacinas Atenuadas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/imunologia , Elétrons , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Vacinas de Produtos Inativados/imunologia
11.
Nutrients ; 13(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920187

RESUMO

Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a "chow-type" nutritionally adequate non-PD. Additional variables within a diet's matrix appear to affect routine indicators or gastrointestinal health.


Assuntos
Comportamento Alimentar/fisiologia , Trato Gastrointestinal/fisiologia , Glicolipídeos/administração & dosagem , Glicoproteínas/administração & dosagem , Proteínas do Leite/administração & dosagem , Proteínas de Soja/administração & dosagem , Ração Animal , Animais , Biomarcadores , Motilidade Gastrointestinal , Gotículas Lipídicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
12.
Artigo em Inglês | MEDLINE | ID: mdl-34035564

RESUMO

Harmful algal and cyanobacterial blooms pose threats to human and ecological health due to their release of hazardous toxins. Microcystin-LR (MC-LR), a potent hepatotoxin, is the most prevalent cyanotoxin found in freshwater blooms. Although produced by many species of cyanobacteria, Microcystis aeruginosa is most commonly associated with MC-LR production. These blooms are increasing in occurrence in lakes, ponds, and other surface waters and, therefore, require efficient treatment methods to be removed from water supplies. Ionizing radiation technologies offer promising approaches for the removal of organic pollutants in water, including cyanotoxins and cyanobacteria. Gamma irradiation for the degradation of cyano-bacteria and toxins is effective for overall MC-LR degradation as well as reducing cell concentrations. However, gamma irradiation technology involves use of radioactive isotopes and, therefore, may not feasible commercially from a security perspective. Electron beam (eBeam) irradiation technology, which relies on regular electricity to generate highly energetic electrons, is able to achieve the same results without the confounding challenges of radioactive isotopes and related security issues. In this critical review, the current state of the science concerning the remediation of MC-LR and M. aeruginosa with ionizing radiation technologies is presented and future necessary research is discussed.

13.
Front Microbiol ; 10: 694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024484

RESUMO

Ionizing radiation such as Electron beam (EB) and gamma irradiation inactivate microbial cells preventing their multiplication. These cells, however, are structurally intact and appear to have residual metabolic activity. We were interested in understanding the metabolic pathways that were still functional in EB-inactivated cells. Therefore, the primary objective of this study was to compare the metabolites accumulating in EB-inactivated pathogens E. coli 026:H11 and S. Typhimurium immediately after EB inactivation and 24 h post inactivation. Defined aliquots (109 CFU/mL) of E. coli O26-H11 (TW 1597) and S. Typhimurium (ATCC 13311) suspended in phosphate-buffered saline were exposed to lethal EB doses of 3 kGy and 2 kGy, respectively. Complete inactivation (inability of cells to multiply) was confirmed by traditional plating methods. An untargeted analysis of the primary metabolites accumulating in un-irradiated (control) cells, EB-inactivated cells immediately after irradiation, and EB-inactivated cells that were incubated at room temperature for 24 h post EB inactivation was performed using gas chromatography/mass spectrometry. A total of 349 different metabolites were detected in the EB-inactivated S. Typhimurium and E. coli O26:H11 cells, out of which, only 50% were identifiable. In S. Typhimurium, 98 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In E. coli O26:H11, 63 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In both these pathogens, the ß-alanine, alanine, aspartate, and glutamate metabolic pathways were significantly impacted (P < 0.01). Furthermore, the metabolomic changes in EB-inactivated cells were amplified significantly after 24 h storage at room temperature in phosphate-buffered saline. These results suggest that EB-inactivated cells are very metabolically active and, therefore, the term Metabolically Active yet Non-culturable is an apt term describing EB-inactivated bacterial cells.

14.
Vaccine ; 37(9): 1142-1150, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30691984

RESUMO

Prescottella equi (formerly Rhodococcus equi) is a facultative intracellular bacterial pathogen that causes severe pneumonia in foals 1-6 months of age, whereas adult horses are highly resistant to infection. We have shown that vaccinating pregnant mares against the conserved surface polysaccharide capsule, ß-1 → 6-linked poly-N-acetyl glucosamine (PNAG), elicits opsonic killing antibody that transfers via colostrum to foals and protects them against experimental infection with virulent. R. equi. We hypothesized that equine IgG1 might be more important than IgG4/7 for mediating protection against R. equi infection in foals. To test this hypothesis, we compared complement component 1 (C1) deposition and polymorphonuclear cell-mediated opsonophagocytic killing (OPK) mediated by IgG1 or IgG4/7 enriched from either PNAG hyperimmune plasma (HIP) or standard plasma. Subclasses IgG1 and IgG4/7 from PNAG HIP and standard plasma were precipitated onto a diethylaminoethyl ion exchange column, then further enriched using a protein G Sepharose column. We determined C1 deposition by enzyme-linked immunosorbent assay (ELISA) and estimated OPK by quantitative microbiologic culture. Anti-PNAG IgG1 deposited significantly (P < 0.05) more C1 onto PNAG than did IgG4/7 from PNAG HIP or subclasses IgG1 and IgG4/7 from standard plasma. In addition, IgG1 from PNAG HIP mediated significantly (P < 0.05) greater OPK than IgG4/7 from PNAG HIP or IgG1 and IgG4/7 from standard plasma. Our findings indicate that anti-PNAG IgG1 is a correlate of protection against R. equi in foals, which has important implications for understanding the immunopathogenesis of R. equi pneumonia, and as a tool for assessing vaccine efficacy and effectiveness when challenge is not feasible.


Assuntos
Acetilglucosamina/imunologia , Infecções por Actinomycetales/veterinária , Anticorpos Antibacterianos/sangue , Complemento C1/imunologia , Imunoglobulina G/sangue , Fagocitose , Rhodococcus equi/imunologia , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/prevenção & controle , Fatores Etários , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/classificação , Anticorpos Antibacterianos/imunologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/prevenção & controle , Cavalos/imunologia , Imunoglobulina G/classificação , Proteínas Opsonizantes , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/prevenção & controle
15.
Front Microbiol ; 9: 2138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250460

RESUMO

Reports in the literature suggest that bacteria exposed to lethal doses of ionizing radiation, i.e., electron beams, are unable to replicate yet they remain metabolically active. To investigate this phenomenon further, we electron beam irradiated Escherichia coli cells to a lethal dose and measured their membrane integrity, metabolic activity, ATP levels and overall cellular functionality via bacteriophage infection. We also visualized the DNA double-strand breaks in the cells. We used non-irradiated (live) and heat-killed cells as positive and negative controls, respectively. Our results show that the membrane integrity of E. coli cells is maintained and that the cells remain metabolically active up to 9 days post-irradiation when stored at 4°C. The ATP levels in lethally irradiated cells are similar to non-irradiated control cells. We also visualized extensive DNA damage within the cells and confirmed their cellular functionality based on their ability to propagate bacteriophages for up to 9 days post-irradiation. Overall, our findings indicate that lethally irradiated E. coli cells resemble live non-irradiated cells more closely than heat-killed (dead) cells.

16.
J Food Sci ; 82(7): 1614-1621, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28613401

RESUMO

Raw milk is known to contain relatively high numbers of microorganisms, some of which include microbial pathogens. Electron beam (eBeam) processing is a nonthermal pasteurization food processing technology. The underlying hypothesis was that eBeam processing will not negatively influence the composition, nutrient content, and aroma profile of raw milk. Raw milk samples were exposed to eBeam doses of 1 and 2 kGy, since our studies had shown that 2 kGy is suitable for raw milk pasteurization. The untreated and eBeam-treated raw milk samples were analyzed to detect changes in lactose, vitamin B2 , vitamin B12 , and calcium concentrations. The possible breakdown of casein and whey proteins and lipid oxidation were investigated along with the formation of volatile aroma compounds. Even though vitamin B2 showed a 31.6% decrease in concentration, the B2 content in eBeam-pasteurized raw milk met all USDA nutritional guidelines. Even though there were no indications of lipid oxidation after the 2.0-kGy eBeam treatment, there was lipid oxidation (58%) after 7 d of refrigerated storage. However, based on the GC-olfactory analysis, the lipid oxidation did not necessarily result in the development of a wide variety of off-odors.


Assuntos
Leite/química , Valor Nutritivo , Pasteurização , Compostos Orgânicos Voláteis/análise , Animais , Cálcio/análise , Caseínas/análise , Lactose/análise , Riboflavina/análise , Vitamina B 12/análise , Proteínas do Soro do Leite/análise
17.
Top Curr Chem (Cham) ; 375(1): 6, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000138

RESUMO

Food irradiation is over 100 years old, with the original patent for X-ray treatment of foods being issued in early 1905, 20 years after there discovery by W. C. Roentgen in 1885. Since then, food irradiation technology has become one of the most extensively studied food processing technologies in the history of mankind. Unfortunately, it is the one of the most misunderstood technologies with the result that there are rampant misunderstandings of the core technology, the ideal applications, and how to use it effectively to derive the maximum benefits. There are a number of books, book chapters, and review articles that provide overviews of this technology [25, 32, 36, 39]. Over the last decade or so, the technology has come into greater focus because many of the other pathogen intervention technologies have been unable to provide sustainable solutions on how to address pathogen contamination in foods. The uniqueness of food irradiation is that this technology is a non-thermal food processing technology, which unto itself is a clear high-value differentiator from other competing technologies.

18.
PLoS One ; 11(6): e0158128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27341670

RESUMO

Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120-145°C for up to 30 min or irradiated at 0-50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability.


Assuntos
Ração Animal , Diarreia/veterinária , Desinfecção/métodos , Aditivos Alimentares , Contaminação de Alimentos , Vírus da Diarreia Epidêmica Suína , Inativação de Vírus , Ração Animal/virologia , Animais , Infecções por Coronavirus/veterinária , Temperatura Alta , Radiação Ionizante , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Inativação de Vírus/efeitos da radiação
19.
Artigo em Inglês | MEDLINE | ID: mdl-27050143

RESUMO

In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.


Assuntos
Desinfecção/métodos , Escherichia coli/efeitos da radiação , Microbiologia da Água , Purificação da Água/métodos , Escherichia coli/fisiologia , Humanos , Ultrassom , Raios Ultravioleta , Águas Residuárias/microbiologia
20.
PLoS One ; 11(2): e0148111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828865

RESUMO

There is currently no licensed vaccine that protects foals against Rhodococcus equi-induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective.


Assuntos
Infecções por Actinomycetales/veterinária , Brônquios/microbiologia , Elétrons , Doenças dos Cavalos/imunologia , Rhodococcus equi/fisiologia , Infecções por Actinomycetales/diagnóstico por imagem , Administração Oral , Animais , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Doenças dos Cavalos/diagnóstico por imagem , Cavalos , Imunidade Celular , Imunoglobulina G/metabolismo , Interferon gama/biossíntese , Leucócitos Mononucleares/metabolismo , Nariz/imunologia , Resultado do Tratamento , Ultrassonografia , Vacinação/veterinária , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...